歡迎訪問 納樸材料 官方網站!
聯(lián)系我們:18970647474
當前位置:首頁 > 新聞中心 > 行業(yè)新聞
新聞中心
news Center
聯(lián)系我們
Contact Us

蘇州納樸材料科技有限公司

聯(lián)系人:

李女士

Contact:

Ms. Li

手機:

18970647474(同微信)

Mobile Phone:

+86-18970647474
(WeChat ID)

郵箱:

2497636860@qq.com

E-mail:

2497636860@qq.com

技術聯(lián)系人:

徐先生

Technical Contact:

Mr. Xu

手機:

18914050103(同微信)

Mobile Phone:

+86-18914050103
(WeChat ID)

郵箱:

nanopure@qq.com

E-mail:

nanopure@qq.com

辦公室地址:

蘇州市相城區(qū)聚茂街185號D棟11層1102

Office Address:

D-1102, 185, Jumao Street, Xiangcheng, Suzhou, Jiansu, China

工廠地址:

江西省吉安市井岡山經濟技術開發(fā)區(qū)

Plant Address:

Jinggangshan Economic Development Zone, Ji' an 343000, Jiangxi, China

世界領先技術納米氮化硼---高導熱低介電透波絕緣材料

信息來源:本站 | 發(fā)布日期: 2024-01-05 15:23:47 | 瀏覽量:266956

摘要:

致力于解決當前我國電子封裝及熱管理領域面臨的瓶頸技術問題,建立了國際先進的熱管理解決方案及相關材料生產技術,是國內低維材料技術領域頂尖的創(chuàng)新型研發(fā)團隊。本產品是國內首創(chuàng)自主研發(fā)的高質量二維氮化硼納米片,成功制備了大面積、厚度可控的二維氮化硼散熱膜,具有…

 致力于解決當前我國電子封裝及熱管理領域面臨的瓶頸技術問題,建立了國際先進的熱管理解決方案及相關材料生產技術,是國內低維材料技術領域頂尖的創(chuàng)新型研發(fā)團隊。本產品是國內首創(chuàng)自主研發(fā)的高質量二維氮化硼納米片,成功制備了大面積、厚度可控的二維氮化硼散熱膜,具有透電磁波、高導熱、高柔性、低介電系數、低介電損耗等多種優(yōu)異特性,解決了當前我國電子封裝及熱管理領域面臨的“卡脖子”問題,擁有國際先進的熱管理TIM解決方案及相關材料生產技術,是國內低維材料技術領域頂尖的創(chuàng)新型高科技產品。       

圖片

產品的應用方向為5G通訊絕緣熱管理,主要目標市場可分為終端設備,智能工業(yè),及新能源汽車三大板塊。5G技術是近年來最受矚目的關鍵科技,也是國內外重點發(fā)展的核心產業(yè)之一。隨著5G商用,工業(yè)4.0、智慧城市、無人駕駛等科技建設的推進,該項目已經初步形成了萬億的市場規(guī)模,并持續(xù)快速發(fā)展。 

圖片

圖片

氮化硼

圖片

      氮化硼是由氮原子和硼原子所構成的晶體。化學組成為43.6%的硼和56.4%的氮,具有四種不同的變體:六方氮化硼(HBN)、菱方氮化硼(RBN)、立方氮化硼(CBN)和纖鋅礦氮化硼(WBN)。

圖片


氮化硼問世于100多年前,最早的應用是作為高溫潤滑劑的六方氮化硼,不僅其結構而且其性能也與石墨極為相似,且自身潔白,所以俗稱:白石墨。

氮化硼(BN)陶瓷是早在1842年被人發(fā)現的化合物。國外對BN材料從第二次世界大戰(zhàn)后進行了大量的研究工作,直到1955年解決了BN熱壓方法后才發(fā)展起來的。美國金剛石公司和聯(lián)合碳公司首先投入了生產,1960年已生產10噸以上。

1957年R·H·Wentrof率先試制成功CBN,1969年美國通用電氣公司以商品Borazon銷售,1973年美國宣布制成CBN刀具。 

1975年日本從美國引進技術也制備了CBN刀具。

1979年首次成功采用脈沖等離子體技術在低溫低壓卜制備崩c—BN薄膜。

20世紀90年代末,人們已能夠運用多種物理氣相沉積(PVD)和化學氣相沉積(CVD)的方法制備c-BN薄膜。

從中國國內看,發(fā)展突飛猛進,1963年開始BN粉末的研究,1966年研制成功,1967年投入生產并應用于我國工業(yè)和尖端技術之中。

圖片

物質特性:

CBN通常為黑色、棕色或暗紅色晶體,為閃鋅礦結構,具有良好的導熱性。硬度僅次于金剛石,是一種超硬材料,常用作刀具材料和磨料。 

氮化硼具有抗化學侵蝕性質,不被無機酸和水侵蝕。在熱濃堿中硼氮鍵被斷開。1200℃以上開始在空氣中氧化。真空時約2700℃開始分解。微溶于熱酸,不溶于冷水,相對密度2.29。壓縮強度為170MPa。在氧化氣氛下最高使用溫度為900℃,而在非活性還原氣氛下可達2800℃,但在常溫下潤滑性能較差。氮化硼的大部分性能比碳素材料更優(yōu)。對于六方氮化硼:摩擦系數很低、高溫穩(wěn)定性很好、耐熱震性很好、強度很高、導熱系數很高、膨脹系數較低、電阻率很大、耐腐蝕、可透微波或透紅外線。

圖片

物質結構:

氮化硼六方晶系結晶,最常見為石墨晶格,也有無定形變體,除了六方晶型以外,氮化硼還有其他晶型,包括:菱方氮化硼(r-BN)、立方氮化硼(c-BN)、纖鋅礦型氮化硼(w-BN)。人們甚至還發(fā)現像石墨稀一樣的二維氮化硼晶體。

通常制得的氮化硼是石墨型結構,俗稱為白色石墨。另一種是金剛石型,和石墨轉變?yōu)榻饎偸脑眍愃?,石墨型氮化硼在高溫?800℃)、高壓(8000Mpa)[5~18GPa]下可轉變?yōu)榻饎傂偷稹J切滦湍透邷氐某膊牧?,用于制作鉆頭、磨具和切割工具。

圖片

應用領域:

1. 金屬成型的脫模劑和金屬拉絲的潤滑劑。

2. 高溫狀態(tài)的特殊電解、電阻材料。

3. 高溫固體潤滑劑,擠壓抗磨添加劑,生產陶瓷復合材料的添加劑,耐火材料和抗氧化添加劑,尤其抗熔融金屬腐蝕的場合,熱增強添加劑、耐高溫的絕緣材料。

4. 晶體管的熱封干燥劑和塑料樹脂等聚合物的添加劑。

5. 壓制成各種形狀的氮化硼制品,可用做高溫、高壓、絕緣、散熱部件。

6. 航天航空中的熱屏蔽材料。

7. 在觸媒參與下,經高溫高壓處理可轉化為堅硬如金剛石的立方氮化硼。

8. 原子反應堆的結構材料。

9. 飛機、火箭發(fā)動機的噴口。

10.高壓高頻電及等離子弧的絕緣體。

11.防止中子輻射的包裝材料。

12.由氮化硼加工制成的超硬材料,可制成高速切割工具和地質勘探、石油鉆探的鉆頭。

13.冶金上用于連續(xù)鑄鋼的分離環(huán),非晶態(tài)鐵的流槽口,連續(xù)鑄鋁的脫模劑。

14.做各種電容器薄膜鍍鋁、顯像管鍍鋁、顯示器鍍鋁等的蒸發(fā)舟。

15.各種保鮮鍍鋁包裝袋等。

16.各種激光防偽鍍鋁、商標燙金材料,各種煙標,啤酒標、包裝盒,香煙包裝盒鍍鋁等等。

17.化妝品用于口紅的填料,無毒又有潤滑性,又有光澤。

圖片

未來前景:

由于鋼鐵材料硬度很高,因而加工時會產生大量的熱,金剛石工具在高溫下易分解,且容易與過渡金屬反應,而c-BN材料熱穩(wěn)定性好,且不易與鐵族金屬或合金發(fā)生反應,可廣泛應用于鋼鐵制品的精密加工、研磨等。c-BN除具有優(yōu)良的耐磨性能外,耐熱性能也極為優(yōu)良,在相當高的切削溫度下也能切削耐熱鋼、鐵合金、淬火鋼等,并且能切削高硬度的冷硬軋輥、滲碳淬火材料以及對刀具磨損非常嚴重的Si-Al合金等。實際上,由c-BN晶體(高溫高壓合成)的燒結體做成的刀具、磨具已應用于各種硬質合金材料的高速精密加工中。

圖片


c-BN作為一種寬禁帶(帶隙6.4 eV)半導體材料,具有高熱導率、高電阻率、高遷移率、低介電常數、高擊穿電場、能實現雙型摻雜且具有良好的穩(wěn)定性,它與金剛石、SiC和GaN一起被稱為繼Si、Ge及GaAs之后的第三代半導體材料,它們的共同特點是帶隙寬,適用于制作在極端條件下使用的電子器件。與SiC和GaN相比,c-BN與金剛石有著更為優(yōu)異的性質,如更寬的帶隙、更高的遷移率、更高的擊穿電場、更低的介電常數和更高的熱導率。顯然作為極端電子學材料,c-BN與金剛石更勝一籌。然而作為半導體材料金剛石有它致命的弱點,即金剛石的n型摻雜十分困難(其n型摻雜的電阻率只能達到102 Ω·cm,遠遠未達到器件標準),而c-BN則可以實現雙型摻雜。例如,在高溫高壓合成以及薄膜制備過程中,添加Be可得到P型半導體;添加S、C、Si等可得到n型半導體。因此綜合看來c-BN是性能最為優(yōu)異的第三代半導體材料,不僅能用于制備在高溫、高頻、大功率等極端條件下工作的電子器件,而且在深紫外發(fā)光和探測器方面有著廣泛的應用前景。事實上,最早報道了在高溫高壓條件下制成的c-BN發(fā)光二極管,可在650℃的溫度下工作,在正向偏壓下二極管發(fā)出肉眼可見的藍光,光譜測量表明其最短波長為215 nm(5.8 eV)。c-BN具有和GaAs、Si相近的熱膨脹系數,高的熱導率和低的介電常數,絕緣性能好,化學穩(wěn)定性好,使它成為集成電路的熱沉材料和絕緣涂覆層。此外c-BN具有負的電子親和勢,可以用于冷陰極場發(fā)射材料,在大面積平板顯示領域具有廣泛的應用前景。在光學應用方面,由于c-BN薄膜硬度高,并且從紫外(約從200 nm開始)到遠紅外整個波段都具有高的透過率,因此適合作為一些光學元件的表面涂層,特別適合作為硒化鋅(ZnSe)、硫化鋅(ZnS)等窗口材料的涂層。此外,它具有良好的抗熱沖擊性能和商硬度,有望成為大功率激光器和探測器的理想窗窗口材料。

圖片      

圖片

圖片

圖片

  • 高導熱透波絕緣氮化硼膜材主要應用

    圖片

圖片

目前消費者對于新能源汽車需求從“里程焦慮”轉向“安全焦慮” ,熱失控已經成為電動車安全問題核心考量因素。熱失控是電池內部出現放熱連鎖反應引起電池溫升速率急劇變化的過熱現象,發(fā)生時通常伴隨著冒煙、起火、爆炸等危害。在電池組中,若局部區(qū)域電池發(fā)生的熱失控事件失去控制,將擴展到周圍區(qū)域的電池,形成“多米諾骨牌”效應,最終引起熱失控在系統(tǒng) 內擴展而導致極大的危害,因此,熱失控擴展的抑制尤為重要。對良好的機械安全性,包括抗沖擊能力以及震動穩(wěn)定性的需求提升,是使得新能源車內導熱、隔熱材料需求提升的原因之一。相比于傳統(tǒng)汽車,電動車由于增加了電池、電機、電控等部件,對于熱管理所用膠粘劑在性能、數量上都帶來了更大的市場空間。為平衡電池效率與熱安全保護,需防止單體熱擴散。為了提高能量密度而使用高鎳三元正極材料時,鋰離子易形成鋰枝晶刺穿內部隔膜導致短 路,同時由于材料間鍵強不同,隨鎳含量的增加電池熱穩(wěn)定性下降。因此為了防止讓電池單體自燃擴散至整個動力電池包,一般廠商通過控制 影響(如隔熱)和保持溫度(如泄壓、散熱)兩方面解決。不同電芯使用的防火隔熱材料不同。目前三元電池系統(tǒng)中主要在采用的防火隔熱材料主要有氣凝膠、隔離板、隔熱泡棉、熱陶瓷。由于不同形 狀電芯的膨脹率、比表面積、熱失控難易程度不同,不同公司采用不同防火隔熱材料進行隔熱處理。

圖片

導熱需求:鋰離子電池充放電電流較大,并伴隨著多種化學物質傳輸和電化學反應,散熱條件較差,引起電池內部溫度升高。車輛底盤空間有 限,電池模塊必須緊密排列。然而緊密排列的電池一方面容易導致熱量堆積,且不同位置的電芯往往溫度也不完全一致。離子電池工作溫度 30-40℃時,溫度每升高1℃,電池使用壽命越降低2個月。隔熱需求:導熱不暢情況下,過高的溫度易導致冒煙、起火、爆炸等危險需要有效,需要在有良好的隔熱效果的基礎上保證阻燃效果。保溫需求:低溫下,電解液增稠致使導電介質運動受阻,電化學反應速率和反應深度降低,從而導致電池容量下降,動力電池宏觀表現出冬季 環(huán)境下電動汽車“虧電”現象。除熱管理系統(tǒng)外,動力電池通常使用具有高導熱性、強絕緣性的導熱膠為動力電池傳導熱量,降低電芯間溫差;隔熱膠則可防止電池內部爆炸 時的熱量快速傳導,在發(fā)生熱失控事故時給乘客較長的逃生時間,此類膠通常絕熱性、耐熱性和阻燃性較好。基于CTP的熱管理方法:新型CTP設計可以減少一半的熱界面材料,從原有模組上層電芯至模組(CTM)填縫膠和下層模組至電池包(MTP)的填 縫膠變成1層電芯到冷卻板的導熱膠粘劑;并減少了一半的接口數量,從原有的4個變?yōu)楝F有的2個接口,還去掉了模組外殼。這顯著降低了電 池堆的熱阻,進而降低了冷卻板的冷卻(或加熱)負荷,支持使用導熱率較低的填縫膠。另一方面,由于不再使用模組外殼來防止電池受到環(huán) 境影響,需要導熱膠擁有更嚴格的環(huán)境耐受性和機械性能。

圖片

相關文章 (related information)
相關產品 (Related Products)

Copyright 2020 蘇州納樸材料科技有限公司 蘇ICP備16022635號-1 版權聲明 技術支持:江蘇東網科技 [后臺管理]
Top